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LETTER TO THE EDITOR 

Comments on the presymplectic formalism and the theory of 
regular Lagrangians with constraints 

JosB F Carifiena and Manuel F Rafiada 
Departamento de Fisica Te6rica, Facultad de Ciencias, Universidad de Zaragoza, 50009 
zarapoza, Spain 

Received 4 November 1994 

Abstract The Lagrangian formalism for systems with constraints is developed using a singular 
Lagnugian defined in the extended tangent bundle T(Q x R). The dynamics defined by the 
new extended Lagrangian. that incorporates the constraints, is studied using the formalism of 
the presymplectic geomeey. A compantive study with other geometric approaches is presented. 

The theory of constrained systems includes the study of practical problems of great 
importance some of which are related to control theory, but the study of these systems 
is also important for it poses many questions which are intimately connected with some 
of the geometric methods used in modem theoretical mechanics (see [l-51 and references 
therein). 

The standard method for incorporating constraint functions into equations of motion is 
the use of the so-called Lagrange multipliers. The relation between this method and the 
Lagrangian formalism can be studied using two different approaches. 

(i) The original regular Lagrangian L is the appropriate Lapangian but the presence of 
constraints introduce a perturbing effect in the free Euler-Lagrange equations that can be 
identified with the addition of a vertical non-Lagrangian perturbation. 

(ii) The presence of Lagrange multipliers is related to the existence of a Lagrangian 
lL # L defined in an extended space, but this new Lagrangian is singular. 

Recently [4], approach (i) has been studied using the geometric tools from Lagrangian 
tangent bundle geometry. The purpose of this letter is to present a study of approach (ii) 
using the formalism of presymplectic geometry. 

Suppose that a Lagrangian L is given. Then one can construct a semibasic 1-form 0, 
(the associated Cartan form), an exact 2-form OJL and an energy function Er. by 

OJL = - d 0 ~  QL = F(dL) E L  = A(L) - L 

where S is the vertical endomorphism and A the Liouville vector field 

. a  a 
awl aut 

A =U'-. S = - B d q '  

The dynamics is represented by the flow of the vector field XL solution of the equation 

~ ( X L ) O J L  = dEL. 
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If the 2-form OL is symplectic the Lagrangian L is regular; otherwise L is singular. If L 
is regular the solution XL of this equation is uniquely determined and it turns out to be a 
second-order differential equation (hereafter shortened to SODE) vector field, i.e. S ( X L )  = A, 
and its integral curves satisfy the Euler-Lagrange equations. In coordinates XL takes the 
form 

where f i ( q ,  U) are the Lagrangian forces. 
Next, we summarize some of the main characteristics of the theory of singular 

Lagrangians (for a review see [6,7]). 
,(i) The Lagrangian L is said to be singular when the 2-form WL is not symplectic. If 

the rank of this 2-form is constant then the OL is called presymplectic. 
(ii) Because KeroL # 0 the dynamical equation is ill defined. The first condition to 

be satisfied is that the energy EL must be projectable by KerwL. This property leads to a 
submanifold MI in which the dynamical equation can be studied. 

(iii) The geometrical algorithm for obtaining a submanifold C in which the dynamical 
equation admits a tangent solution was developed by Gotay et a1 18-10]. The algorithm 
generates a decreasing sequence (Mk}  of submanifolds and then C is the limit of such a 
sequence (provided it exists). The restricted equation to C has solutions tangent to C. 

(iv) In some cases the solution obtained in C is given by a non-SODE vector field. The 
conditions for the existence of a solution which is the restriction of a SODE can lead to 
a smaller final submanifold (in the Lagrangian formalism the dynamics must always be 
represented by SODE vector fields). 

Suppose that our system is described by a regular Lagrangian function L on TQ ( T Q  
is the velocity phase space of the configuration space Q )  but it is subjected to a constraint 
force expressed by the presence of a constraint equation of the form 

@(qi ,  U') = 0. 

We introduce a new configuration space Q of the form Q = Q x R, the coordinates on the 
tangent bundle T Q  being denoted ( q i ,  A, U', 5).  and a new function L defined on T Q  by 

L(q', A,  U', 5 )  = L(q', U') +. Aq5(q', U') 

4 being the given consmint function on TQ. 
The new Lagrangian L is singular because it does not depend on the velocity 5 of the 

coordinate A. As stated above, we are interested in the case of w~ of constant rank. The 
following proposition relates this property with the form of 6. 

Proposition 1. Let w+ denote the 2-form w+ = -de,, 0, = S*(d@). If i(X)w4 = 0 for 
any vertical field Xu E X " ( T Q )  then the extended Lagrangian 2-form wa. is presymplectic. 

Proof. The 1-form & takes the form 

~ n .  = eL + ne, 
so that the expression of wa in local coordinates is 
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where Wji denotes the n-dimensional Hessian matrix of L 

The expression obtained for Wji can be interpreted as a pencil of quadratic forms. Therefore, 
when 1 coincides with one of its eigenvalues the rank of will be less than 2n. If 
i(X)w, = 0 for any vertical field Xu E X"(TQ) ,  then W$ vanishes. Consequently, if 09 
satisfies thii property then on. will have a constant rank 2n on TQ. 

This proposition restricts the extended formalism to the case of &ne constraints. In 
geometric terms, this is equivalent to the existence of Q of a function h E C"(Q) and a 
1-form a! E A'(Q) such that @ takes form 

@ = i + h  

where is the pull-back of h through the tangent bundle projection, r% = tzh,  and 
h E C"(TQ) denotes a function linear on the fibres defined by h(q, U) = (a!(q), U). 
The situation @ = & corresponds to the so-called holonomic constraints and @ = h to 
non-holonomic constraints of the linear velocity-dependent type. The case a! E B'(Q)  
means that the velocity-dependent function @ ~= & is the 'time derivative' of a holonomic 
constraint. 

It was proved in [ 11,121 that if L is a singular Lagrangian then the kernel of OL satisfies 
the following dimensional relation 

. ,  

dim(KeroL) < Zdim[V(Kerw~)]. 

Singular Lagrangians satisfying the equality, i.e. dim(KerwL) = 2dim[V(Kero~)], are 
called type II. They ire endowed with the following interesting characteristics. 

(i) The action of the vertical endomorphism S on the kernel gives the vertical part, i.e. 
S(KeroL) = V(KeroL). 

(ii) If L is a type-I1 Lagrangian which admits a global dynamics, then there always exists 
a SODE field solution of the dynamics; if there is no global dynamics then this property is 
also hue but the SODE solution need not be tangent to the constraint submanifold. 

(iii) Assuming that S passes to the quotient under K e r w ~  and that there is a global 
dynamics, its projection defines an integrable almost t igent  sbucture'if &d only if L is 
of type 11. 

The expressions for WL and EL are - 
o n . = w ~ + G r \  dh-Xda! 

and 

EL=EL-Ah 

hecause the h term does 'not conhibute to the energy fdnction EL, for A(&) - h = 0. 
The kernel of WE.  defined by 

KerwL = (Z E X ( T Q )  I i (Z)on.  = 01 
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is a two-dimensional subbundle of TQ, the coordinate expression of two generators being 
given by 

where a, =a&) denote the components of the 1-form U, and W'j is the inverse matrix of 
the Hessian Wij which, as stated above, is assumed to be of maximal rank. Consequently 
K e r q  satisfies 

dimKeroL = 2dimIV(Kerm)]. 

Thus, if the constraint @ satisfies the assumption of proposition 1, then the extended 
0 

has been obtained, we must study whether the reduced space 
TQ/Kerw inherits the integrable almost tangent structure. Cantrijn eta! [12] have proved 
that for type-U: Lagrangians the test of this property consists of checking whether the image 
of LzS lies in K e r q  for any Z in Keron. (&S denotes the Lie derivative of S under 
2). The following proposition studies the case of standard Lagrangians, that is, of regular 
Lagrangians defined by a pair (g, V) where g is a Riemannian metric on Q and V is a 
potential function (the co-called Lagrangians of mechanical type). 

Proposition 2. Let the configuration space Q be a Riemannian manifold and the Lagrangian 
L: T Q  + B be defined by L(q,  U) = $g(u, U) - V(q) where V E C""(Q). Then, if the 
constraint @ takes the form q5 = + 6, the (extended) vertical endormorphism field S 
defined on T(Q x R) passes to the quotient under KeroL. 

Proof. 

Lagrangian L is of type II. 
Once the kernel of 

In coordinates we have the following expression for S, 

and, ifoc is a I-form on Q, the Lie derivatives are 

Therefore, the condition Im(&S) c K e r q  leads to 

a 
-(W"ff,) =o. a U' 

If L is of mechanical type we have W'' = g", hence the condition is satisfied and the 
0 

Note that this result can be extended directly to mechanical Lagrangians with magnetic 
terms or to the more general case of g being a pseudo-Remannian metric. 

Since the extended Lagrangian L is of type II, if S passes to the quotient, then it defines 
an integrable almost tangent structure S' on TQ/Ker OL. Thus it makes sense to look for 
second-order fields in this quotient space. The manifold TQIKerq.  is 2n-dimensional with 
induced coordinates given by (q i ,  w'; i, = 1,. . . , n) where w i  = U' + AW"oc,. Obviously 

(extended) vertical endomorphism S passes to the quotient. 
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for holonomic constraints of the 4 = &,type, the wig corresponding to the uis and S' can be 
identified with the vertical endomorphism of TQ.  This is not the case when 4 = & where 
the quotient manifold cannot naturally be identified, with TQ. 

The extended Lagrangian L does not admit a global dynamics in T Q  but the dynamics 
is restricted to Mi = Q-'(O) c TQ where the constraint function Q is.given by the adtion 
of the non-vertical vectors of Keror. on the energy function EL. i.e. Q = 21 (EL). 

We obtain 

Consequently, the constraint equation 4(qi ,  U') = 0 that in the usual formalism must be 
used as a supplement of the equations of motion arises in this geometric approach in a 
natural way as the function defining the primary constraint submanifold. 

The vector field XL, defined in T Q  and satisfying the dynamical equation 

i (XL)((a.  = dEL 

on the primary constraint submanifold M I ,  has the form 

where G is an arbitrary function and the F's are given Liy 

where f l ( q ,  U) are the Lagrangian forces arising from L .  

must be consistent with the dynamical equation, thus 
According to the geometric algorithm of Gotay ez al [%lo], the primary constraint 4 

x = &(+) = 0. 

This new function x represents a secondary constraint and it determines a new submanifold 
Mz Of Mi by Mz ~ " ( 0 )  C MI. 

The following three particular situations are considered. 
(i) q5 = I;, h E C"(Q). The function x takes the form x = h i d ,  hi = ah/aqi. A 

new constraint function is defined by @ E' X&) and the equation = 0 determines the 
submanifold M3 c MZ by fixing the value of the coordinate A as a function of q' and ,U'. 

We obtain 

1 
A*(q, U) = --(h" hr'2 rJ urus + hLfL) 

where hn denotes h'? = W'jhihj. This corresponds to the determination of he value of the 
Lagrange multiplier in the usual non-geometrical approach. Hence, the dynamical vector 
field XL defined in TQ and tangent to M3 takes the form 
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The final submanifold C = M4 c M3 is defined by the equation ?,h' = Xn.(?,h) = 0 which 
can be written as < = <(q, U). Finally the condition of tangency on C uniquely determines 
the function G, the field XI. is projectable to T Q  and the equations of the projected integral 
curves are 

-U d i -  - f L ( q ,  i U) - F(hpsu  1 v r s  U +h:f;)W"h;. 
dt 

We notice that these equations agree with the results obtained (using a different 

(ii) 4 = &, a = dh, h E Cm(Q). The equation ,y = 0, that determines the submanifold 
approach) in [4]. 

M2, introduces a relation between the velocity < and q' and U'. We obtain 

1 
<'(q, U )  = $(h;.dtf + h:f;) .  

Notice that in this case we determine < without previously fixing the value of A. 

that takes the form 
The (extended) dynamics is given by the restriction to C = Mz of the vector field Xn. 

As in (i) the condition of tangency on C uniquely determines G as a function G = G(q,  U). 
The field Xa is projectable to T Q  and the equations of the projected integral curves are 

d .  . -q' U' 
dt 
d .  1 
-d = fL(q, U )  - s (h:Turus+hh:  f;)Wikh;: 
dr 

can be written as 
This result can also be obtained as follows: if 4 = 2, a = dh, then the Lagrangian L 

d 
dt 

L = L - < h +  -(Ah). 

The hiid term on the right is a gauge term, and the second term is similar to the one in 
case (i) but with -3 instead of A. 

(iii) q4 = &, (Y-E A"(Q). The equation x = 0, that determines directly Mz as the final 
constraint submanifold, introduces a relation between the velocity { and q' and vi and A. 
We obtain 

where XL(&) = (a(Yr/aqs)u'v5+a,f~ and ct2 = W"0r,as. Finally the (extended) dynamics 
is given by the restriction to C = M2 of the vectof field XL but, in this case, the coordinate 
A is not determined as a function of q and U, and, because of this, XL is not projectable to 
T Q .  ~~ 
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To summarize, we have proved that only affine functions can be incorporated into the 
Lagrangian mechanics by means of Lagrange multipliers and that for these functions the 
extended Lagrangian.L, although singular, is endowed with the 'semi-regular' properties 

' of type-II Lagran.gians. When the constraints are holonomic this presymplectic approach 
agrees with the standard way of reducing the configuration space and the same is true 
for constraints given by exact forms (integrable constraints), but for the velocity-dependent 
case the extended coordinate h remains coupled to the physical degrees of freedom. Finally, 
in recent years the theory of Lagrange multipliers enlarging the configuration space of a 
system has received much attention in connection with the Faddeev-Jackiw approach [13- 
151 to quantization of linear Lagrangians [16]. Thus we think that this matter is particularly 
interesting and that the use of the symplectic formalism for constrained systems still requires 
much development. 

Partial financial support by DGICYT (Madrid), grant PB93-0582, is acknowledged. 
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